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Abstract-A latent heat method is modified in the present study to properly handle the latent heat evolved 
in the solid-lfication process of a binary alloy system. The eutectic state (C,, TE) is imposed on the eutectic 
front such that no species equation is needed in the pure solid region. Both momentum and species 
equations in the irregular domain consisting of the mushy zone and the liquid region are successfully solved 
by using the weighting function scheme along with the NAPPLE algorithm. To trace the interface of the 
mushy zone and the pure liquid region, an interpolation technique is proposed. Two examples were 
conducted to examine the performance of the present method. Satisfactory agreement with the existing 

experimental results is observed on the total volume of the mushy zone. 

INTRODUCTION 

Solidification of an alloy has many industrial appli- 
cations, such as f’oundry technology, crystal growth, 
coating and purification of materials, welding process, 
etc. Unlike the classical Stefan problem, however, 
alloy solidification involves complex heat and mass 
transport phenomena that are still not well under- 
stood. For most metal alloys, there could be three 
regions, namely, solid region, mushy zone (dendrite 
arms and interdendritic liquid) and liquid region in 
solidification process. To investigate the heat and 
mass transfer during the solidification process of an 
alloy, a few models have been proposed. They can be 
roughly classified into the continuum model and the 
volume-averaged model. 

Based on principles of classical mixture theory, 
Bennon and Incropera [l-3] developed a continuum 
model for momentum, heat and species transport in 
the solidification process of a binary alloy. Voller et al. 
[4] and Rappaz and Voller [5] modified the continuum 
model by considering the solute distribution on micro- 
structure (Scheil approach). Recently, Beckermann 
and Viskanta [6] reported an experimental study on 
dendritic solidification of an ammonium chloride- 
water solution (NH4Cl-H@). A numerical simulation 
for the same physical configuration was also per- 
formed using a volumetric averaging technique. Sub- 
sequently, the volumetric averaging technique was 
systematically derived by Ganesan and Poirier [7] and 
Ni and Beckermann [8]. Detailed discussions on 

microstructure formation and mathematical modeling 
of transport phenomenon during solidification of 
binary systems can be found in the reviews [9, lo]. 

As pointed out by Flemings, some eutectic will form 
in the solidification process of an alloy, no matter how 
low the initial composition (see p. 143 of ref. [ll]). 
Therefore, a great amount of latent heat could be 
suddenly released in an area where the eutectic front 
is sweeping through. This would lead to a numerical 
instability without a particular treatment on the evol- 
ution of latent heat. Another numerical difficulty 
could also arise from the species equation. It is easy 
to verify that the species equation will become trivial 
in the pure solid region due to a zero diffusion 
coefficient. This might result in an inaccurate esti- 
mation on the amount of rejected solute when the 
interdendritic liquid solidifies upon sweeping of a 
eutectic front. The previous investigators [4, 61 did 
not consider a binary system that was cooled below 
its eutectic point, and thus did not observe these 
phenomena. 

In the present study, microstructure formation of 
the mushy zone and its relation to the phase diagram 
is elucidated. Understanding the role of phase diag- 
ram in solidification process of an alloy is essential 
to modeling the related transport phenomenon. The 
abrupt evolution of latent heat from the eutectic front 
is treated by employing the latent heat method [12]. 
Through the use of the weighting function scheme [12, 
131, the eutectic concentration C, is imposed on the 
eutectic front (the isotherm of T = TE) such that the 
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NOMENCLATURE 

C solute concentration B density ratio, pS/pe 

C, specific heat [J kg-’ K-‘1 
D solute diffusivity [m’ ss’] ;: 

concentration expansion coefficient 
thermal expansion coefficients [K-‘1 

d dendrite arm diameter [m] ratio of specific heat, (pC,),/(pC,), 
Da Darcy number, K/L* : difference quantity 

r” 

inertia coefficient, equation (19b) AH heat of fusion [J kg-‘] 
liquid fraction inside a control volume, & porosity 
GE 8 dimensionless temperature, 

G fraction of mushy zone plus liquid (T- T,)lAT 
region inside a control volume 

g gravity, 9.8 1 m s-* : 
equilibrium partition ratio, CsjC, 
sensible heat [J kg-‘] 

H enthalpy [J kg-‘] p dynamic viscosity [kg m-’ s-l] 
K permeability function [m*], equation V kinematic viscosity [m’ s-l] 

(19a) P density [kg m-‘1 
k thermal conductivity [w m-’ K-‘1 0 dimensionless parameter, Ste/( 1 + Ste) 
L latent heat [J kg-‘] or characteristic 7 dimensionless time, t/tc 

length [m] a’, @* artificial functions, equation (24) 
Le Lewis number, Q/D, 4 normalized concentration in liquid 
N ratio of solute buoyancy and thermal phase, WC, 

buoyancy, Bc WBr AT * stream function, equation (34). 
P, p pressure and dimensionless pressure, 

P = PIP, V,z 
Pr Prandtl number, V/Q Superscripts 
Ra Ray leigh number, g/J= AT L’/u,v averaged quantity inside a control 
Ste Stefan number, (C&AT/AH volume 
T temperature [K] * dimensionless quantity 
t time [s] guessed quantity. 

t, characteristic time, L2/(aac) 
To1 tolerance defined in equation (25) 
U, V velocity components in X- and Y- Subscript 

directions [m s-‘1 0 initial quantity 

u, 0 dimensionless velocity components, cc ambient condition 
u= U/V,andv= V/V, C characteristic quantity 

V dimensionless velocity vector, ui + vj E eutectic state 

V, characteristic velocity [m s-l], Q/L eff effective 
X, Y coordinate system [m] F freezing point when C = 0 
x, y dimensionless coordinate system, L liquidus 

x=X/Landy= Y/L e liquid phase 
xr, xr locations of eutectic front and the line max maximum 

of dendrite tips in example 1. min minimum 
ref reference 

Greek symbols S solidus 
CL thermal diffusivity [m’ s’] S solid phase. 

eutectic front is always at the state of eutectic point 
(C,, TE). Thus, no species equation is needed in the 
pure solid region. Two examples are illustrated to 
examine the performance of the present method. 

THEORETICAL ANALYSIS 

Consider a superheated binary alloy of con- 
centration C, and temperature To being cooled to a 
temperature T, below its eutectic temperature TE (i.e. 
To > TL > TE > T,, where TL denotes the liquidus). 
The solidification process is assumed to be in thermal 

equilibrium. Figure 1 shows a cooling process of this 
type in a schematic phase diagram. As illustrated in 
Fig. 1, the first solid would begin to form at TL(Co) 
with the concentration K C,, (see path a), where 
K = C,(T)/C,(T) is known as the equilibrium par- 
tition ratio. For most alloys, the equilibrium partition 
ratio K is less than unity, such that the rejected solute 
(1 - rc)C,, enriches the concentration of the liquid 
phase to state A. This would give rise to an increase in 
the solute concentration of the subsequently solidified 
alloy as illustrated by path b. It appears that the liquid 
phase will eventually reach the eutectic point (C,, T,) 



Latent heat method 1239 

KC0 Kc, co cE 

Fig. 1. Solidification process on a schematic phase diagram 
of a binary alloy system. 

as long as C, # 0. After that the liquid phase solidifies 
like a pure substance. 

For most metal alloys, the solute diffusivity D is 
far smaller than the thermal diffusivity c( (i.e. 
Le = u/D >> 1). This will build up a layer of solute- 
rich liquid in front of the liquid-solid interface. The 
enriched solute decreases the liquidus and thus 
depresses the solidification process or even remelts the 
solid phase. Under such a situation, the liquid-solid 
interface would grow into a dendritic form [l 1, 141. 
Figure 2 presents a typical dendritic solidification (i.e. 
the secondary dendrite arms are not shown here for 
simplicity). The region beyond the line of dendrite tips 
is the liquid region, while that beneath the dendrite 
root (eutectic front) is the solid region. The two-phase 
region including -the dendrites and the interdendritic 
liquid is known as the mushy zone. As depicted in the 
mushy zone of Fig. 2, the solidified alloy following 
paths a-d (see Fig. 1) would form the dendrite trunk, 
while the surface of the dendrite trunk is at the liquidus 
(states A, B, C, D from the tip to the root of the den- 
drite). The liquid at the root of the dendrite trunk, 
however, is at the eutectic point E. It would form 
a eutectic alloy (,e+f) after solidification. Thus, the 
triangle area enclosed by the liquidus, the solidus and 

Liquid region 

Fig. 2. Macro-microstructure of the mushy zone. 

A A line of dendrite tips 

abcde edcba 

the eutectic line in a phase diagram (Fig. 1) does not 
exist physically. 

Generally speaking, the spacing between two adjac- 
ent dendrite trunks (primary spacing) is only 10-100 
pm as compared to the height of the dendrite trunk, 
which could be as large as 100 mm. As a result, the 
concentration gradient of the solute in the inter- 
dendritic liquid is essentially parallel to the dendrite 
trunk (see Fig. 2). In addition, a control volume of 
practical size for numerical procedure (say 5 x 5 mm) 
would cover hundreds of dendrite trunks. This implies 
a uniformly distributed solute concentration in the 
liquid phase of the control volume. On the other hand, 
inside the dendrite trunks, the solute concentration 
varies from rc C,, (path a) in the center to K C, on 
the root surface. Such a concentration variation is 
negligibly small as compared to the high con- 
centration in the liquid phase, especially when the 
equilibrium partition ratio K is small. Based on the 
physical reasoning, both dendrite and interdendritic 
liquid could be assumed to possess their own uniform 
solute concentration inside a control volume. Such an 
assumption (known as the level rule) is evidenced 
from many photomicrographs of dendritic structures 
such as those in Figs. 3-l 9 and 5-l 1 of ref. [ 111. Thus, 
the average solute concentration inside a control vol- 
ume is expressible as 

= ]ePc+(l--E)PsK]Cl (1) 

where p = E pc + (1 - E) ps is the average density and E 
is the porosity (i.e. the fraction of liquid by volume) 
of the mushy zone. The notations Ct and Cs denote 
the average solute concentrations in the interdendritic 
liquid and inside the dendrite arms, respectively, while 
C, is the solute concentration of the liquid phase (i.e. 
C, z C( x CL). In the derivation of equation (1) both 
liquid phase and solid phase inside the control volume 
are assumed to possess the same temperature T (ther- 
mally equilibrium) such that 

GIG = Gm/CL.m = Jc 0”) (2) 

makes a good approximation. 
Next, assume stationary solid phase and introduce 

the conservation law for the solute concentration on 
the control volume. This yields the species equation 
WI : 

where (U, V’) = (&UC, &I’() is the superficial velocity, 
while (LI,, V,) is the velocity of the interdendritic 
liquid. The effective diffusivity of the solute (b,,) and 
the unsteady term a(p Q/at could be approximated, 
respectively, by 
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(5) 
with B = ps/p( being the density ratio of the solid 
phase and liquid phase. It is interesting to note that 
the second term on the right-hand side of equation (5) 
is the source of the solute concentration. It comes from 
the rejected solute when a liquid particle solidifies. 

Similarly, the energy equation can be written as 

where A/ and (C,), are the sensible heat and specific 
heat of liquid phase, and A is the average enthalpy of 
liquid and solid phases inside the control volume. As 
in the numerical procedure of the latent heat method 
for pure substance [12], the enthalpy His split up into 
latent heat and sensible heat as 

PCp =fPe (Cp), + (1 -f )Ps(CJs (9) 

pL = fpeAH (10) 

where CP is the average specific heat of the liquid and 
solid phases and f denotes the fraction of liquid phase 
inside the control volume. It appears that the f-value 
would be equal to the porosity when the control vol- 
ume is located in one of the three regions, namely, the 
liquid region, the mushy zone and the solid region. 
However, care must be exercised when a control vol- 
ume covers both the solid region and mushy zone, 
where E could have a sharp jump across the eutectic 
front, Suppose that a eutectic front intersects a control 
volume at an instant. Let (1 -G) be the fraction of 
solid region and E be the porosity of the mushy zone 
(a = 1 in liquid region), then the fraction of liquid 
inside the control volume can be written as 

f=Gs. (11) 

Thanks to the fact that the eutectic front is at the state 
of (C,, TE), the G value can be easily evaluated by 
tracing the isotherm of T = TE with a technique pro- 
posed in ref. [12]. 

In equation (lo), AH is the latent heat of fusion of 
the alloy, while L is the latent heat per unit mass inside 
the control volume. Strictly speaking, the heat of 
fusion (AH) depends on the solute concentration. As 
a result, its value would vary from time to time and 
from one location to another due to solute rejection 
and diffusion during the solidification process. In the 

present investigation, however, the heat of fusion will 
be regarded as a constant to simplify the compu- 
tations. The heat of fusion based on the initial solute 
concentration in the liquid phase (C, for example) 
would make good approximation for the value of this 
constant. Similar treatment has been widely employed 
in the past [6, 151. Note that in the formulation of the 
continuum model [l-5] enthalpy for each phase (solid 
and liquid) should be defined such that the energy 
equation governs the ‘mixture enthalpy’ of the system. 
Unfortunately, the enthalpy defined by Bennon and 
Incropera [l-3] and Voller et al. [4] and Rappaz and 
Voller [5] leads to a heat of fusion AH(T) = 
[(C,),- (C,),] (T- TE) + (AH)E that depends on the 
specific heat of both solid and liquid phases. This 
seems physically impossible. 

Due to the lack of a reliable model, the superficial 
velocity (CJ, P’) needed in solving equations (3) and 
(6) for the mushy zone is determined by the use of the 
well-known model for non-Darcy porous media [6]. 
After introducing the dimensionless transformation 

x=X/L y= Y/L r=t/t, u=u/v, v= v/v, 

p = P/p,V; t’= (T-T,)/AT AT= To-T, 

4 = WC,, v:fi = v,dv &ii = kdk, 

0% = DcdD, Y = (PC,)J(PC,), Vc = Q/L 

t, = L’/(aa,) 

Q = Ste/(l +Ste) (12) 

along with the physical parameters 

Pr = v/u, Ste = (C,), AT/AH Da = K/L2 

Ra = gpT ATL3/cc,v N = /&CE/pT AT 

Le = q/D, (13) 

the governing equations are expressible as 

(14) 

0 au u au v au 
;a,+<-+,-= -z+yveff 

E ax E aY 

ap Pr * [!e+$] 

0 au u av v au ;p-fy- 
E ax E ay 

-(g+&lvl v+RaPr[(e--8,,,)+N(~-~,,)1 
> 

(16) 



17) = &+z (4/&)-k ( > 1 -/$K (23) 
where Z is the porosity at previous iteration and T 
(or 0) is the temperature of the control volume. The 
symbol & denotes the solute concentration at the 

18) 
liquidus corresponding to the temperature of the con- 
trol volume, while the equilibrium partition ratio K 
(being a function of T) is not necessarily a constant. 

where Iv] = (u~+v’)‘/~ denotes the magnitude of the It should be noted here that the porosity E is unity 
velocity, while the permeability function K, the inertia in the entire liquid region including the line of dendrite 
coefficient F and the dendrite arm diameter d are tips. This renders the line of dendrite tips (see Fig. 
approximated by 2) very difficult to trace. Conventionally, the line of 

dendrite tips is determined by tracing the curve of 

K= 
d2E3 E = 0.999 [6]. Such a definition, however, would pro- 

180(1-&)Z 
(194 vide a zigzag curve for the line of dendrite tips. In 

F= 0.13~-‘.~ 
the present investigation, an artificial function @* is 

(19b) defined by 

d z 100 /*m. (19c) 

Generally speaking, the shrinkage-caused flow is neg- 

(24a) 

(24b) 
ligibly small as compared to the buoyancy-driven 
flow, such that the continuity equation (14) reduces 1 = [a~(x,)jaxl/[a~(x:)iax] (24c) 
to @ = (PC- PKL>/(PKd 

!f+av=(). = @+(I -fi+l~-h_ (244 
ax ay where x < XT and x > x: represent, respectively, the 

For simplicity, the average heat capacity 7 and the mushy zone and the liquid region from the previous 
effective thermal conductivity k$ in equation (17) for iteration. The use of d is to achieve a continuous slope 
each control volume are approximated by across the line of dendrite tips for the @*-function. It 

can be verified that the value of CD* varies continuously 
;i =f+(l-“I”)? (21) from negative, zero to positive along a path from the 

k% = f+ (1 -fWslb (22) 
mushy zone to the liquid region. Hence, the line of 
dendrite tips is well-defined by the curve of @* = 0. 

It is noted that the entire domain including the During the iterations, the value of a is assigned zero 
solid region, mushy zone and the liquid region can be and unity, respectively, for the solid and liquid region 
treated as a single body when the energy equation (17) after the eutectic front and the line of dendrite tips are 
is solved for the temperature 6. Unfortunately, the updated. It is interesting to note from equation (23) 
species equation (18) becomes trivial in the solid that the solute concentration in the interdendritic 
region due to its zero diffusion coefficient. A similar liquid of the mushy zone (4) will approach &(0) 
situation occurs in the momentum equations when the once the solution converges (2 z E) within a prescribed 
pressure solution is attempted. To circumvent this tolerance, i.e. 
difficulty, the particular characteristic (4 = 1) along 
with the no-slip condition (u = v = 0) is imposed at (25) 
the eutectic front such that there is no need to solve 
the solution (u,v,p, 4) for the solid region. This where 9 and $ represent the solution (a, u, v,p, f3,+) 
implies that the mushy zone and the liquid region from the present iteration and that from the previous 
should be regardSed as a single body having an irregu- iteration, respectively. 
lar shape when equations (15)) (16), (18) and (20) are 
solved. The weighting function scheme [12] along with 
the NAPPLE algorithm [16] was found to solve the PERFORMANCE OF THE LATENT HEAT 

solution (u, v,p, 45) quite effectively on such an irregu- METHOD 

lar shape of domain. In this section, a one-dimensional solidification pro- 
In the numerical procedure, the porosity E for each cess of a binary alloy is illustrated in example 1 to 

control volume should be guessed before the system examine the performance of the latent heat method, 
of governing equations is solved. After that, the in case the natural convection is negligible. The effect 
porosity is updated from the level rule of natural convection will be studied in example 2 

Latent heat method 1241 



1242 S. L. LEE and R. Y. TZONG 

through solidification of an NH&l-H,0 solution 
inside a square enclosure. 

Example I-one-dimensional solidiJication of a binary 
alloy 

Let the space between two parallel flat plates be 
fully filled with a quiescent liquid alloy. The liquid 
alloy is assumed to have a uniform initial solute con- 
centration $,, and a uniform initial temperature 
B0 = 1, such that the initial state of the liquid alloy is 
beyond its liquidus Br. At r > 0, the flat plate at x = 0 
is cooled to a temperature (0 = 0) below the eutectic 
temperature &, while the other flat plate at x = 1 is 
maintained at 0 = 1. Natural convection is assumed 
negligibly small. Under this situation, the governing 
equations and the associated boundary conditions can 
be written as 

d 

‘ax 
eLe-iD* !!? 

eff ax 

e(x,o) = i e(o,t) = 0 e(i,z) = i 

w,o) = h, a4umx = 0 

(27) 

(28) 

(29) 

&xr, r) = 1 ifx, exists, otherwise a+(O, r)/ax = 0 

(30) 

where x = xE is the location of the eutectic front. The 
parameters used for the computations were 

y = 1 /? = 1 k,/k, = 1 K = 0.125 

eE = 0.45 ep = 1.45 eL = e,-(eF-eE)4L 

Ste = 1 & = 0.5. (31) 

Numerical results were obtained for various Lewis 
numbers in the range of 2 < Le < 200. The tolerance 
of convergence [equation (25)] was To1 = 5 x lo-‘. 
The step size (Ax,AT) = (0.025,O.Ol) was found 
adequate for all of the cases. 

Figure 3 shows the variation of the eutectic front 
with time for the case of Le = 2. The lines of dendrite 
tips based on @* = 0 and E = 0.999 are also plotted 
in Fig. 3 for comparison. The use of the artificial 
function CD* seems to successfully produce a smooth 
curve for the line of dendrite tips. Note that at the 
very beginning of the solidification process, the solute 
concentration near the dendrite tips is essentially at 
+,,. Hence, the fast cooling at the boundary of x = 0 
causes rapid growing rates for both solid region and 
mushy zone as observable from Fig. 3. In the late stage 
of the solidification process, however, the temperature 
gradient in the liquid region will increase due to the 
particular thermal boundary conditions, 0(x,, r) = eE 
and 0( 1,~) = 1. In addition, the rejected solute would 
accumulate in the interdendritic liquid such that the 

0.0 

Le=2 

eutectic front xE 

--- -- line of dendrite tips xF @*=O 
. . line of dendrite tips &=O.QQQ 

-0.0 0.2 0.4 0.6 0.6 1.0 

T 

Fig. 3. Variations of the eutectic front and the line ofdendrite 
tips with time for Le = 2 (example 1). 

E 
x” 0.6 

2 
E 0.4 

x” 

0.2 
e,,ti?CtiC fl-On+. XE 

______ line of dendrite tips XP **k 

0.01 ’ ’ ’ ’ ’ ’ ’ ’ ’ 1 
0.0 0.2 0.4 0.6 0.8 1.0 

7 

Fig. 4. Effect of Lewis number on the eutectic front and the 
line of dendrite tips (example 1). 

liquidus in the mushy zone will be significantly 
decreased. This might account for the fact that the 
solid region eventually stops growing at r > 0.4, while 
the mushy zone reaches its maximum thickness at 
r = 0.08 and completely remelts at r > 0.33. 

Effect of the Lewis number on the eutectic front 
and the line of dendrite tips is shown in Fig. 4. For a 
large Lewis number (say Le = 200), the rejected solute 
in an early stage of the solidification process would 
pile up on the dendrite surface due to a poor solute 
diffusivity (Le = a/D >> 1). The dendrite thus holds 
rich solute when it grows further due to the strong 
cooling imposed at x = 0. This implies a lean solute 
for the liquid phase in late stage of solidification. Such 
a situation would give rise to a prosperous mushy 
zone (see Fig. 4), although the effect of the Lewis 
number on the eutectic front is negligibly small. The 
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mushy zone seems not to completely remelt when 
Lea 5. 

Example 2-solid$cation of an NH,Cl-HZ0 solution 
inside a square encr’osure 

As mentioned earlier, Beckermann and Viskanta 
[6] performed an experiment to study the dendritic 
solidification of an NH&l-H,0 solution. Their test 
cell has a square cross-section of 4.76 x 4.76 cm*. Both 
bottom and top walls of the test cell were well insu- 
lated, while the two vertical walls served as heat 
source/sink. The initial state of the NH,CI-H,O solu- 
tion was (T,, C,> = (307.5 K, 0.7) with C, denoting 
the mass fraction cd water. At t >, 0, one of the vertical 
walls was suddenly cooled and maintained at 
T, = 273.15 K, which is above the eutectic tem- 
perature TE = 257.75 K. The mushy zone thus started 
to form from the cold wall. No pure solid region was 
found inside the test cell. Such a solidification process 
can be simulated by the governing equations described 
in the previous section along with the boundary con- 
ditions 

u=u=O 0=1 f#~=& for(x,y,O) 

u=o=O 0= 1 -=0 for(O,y,z) ax 

a4 u=u=O 0=0 -=0 for(l,y,r) ax 

u=v=o - = 0 * = 0 
ae 
ay ay 

for (x,0,7) 

,ae u=v=o .- 
,aY 

=0 z=O for(x,l,r) (32) 

where x = 1 represents the cold wall. The cor- 
responding parameters appearing in the governing 
equations are 

Pr = 9.03 Ra = 8.639 x 10’ N = 12.58 

Ste = 0.3557 Le = 74.25 k,/k, = 0.84 

y = 0.589 eF = lo.459 eE = -0.458 

K(T) = 0.3 4,, = Co/C, = 0.7/0.803 = 0.872 

p = 1.023 dpL(e) = (e,-ey(e,-e,). (33) 

In this example, computations were performed on a 
grid system of 101 x 101 nodal points with slightly 
clustered grids along the walls of the enclosure. The 
time step of Ar ??= 1.548 x 10m5 that is equivalent to 
At = 1 s in real time was used for the time coordinate. 
The convergence criterion To1 = 5 x lop4 was em- 
ployed. 

Figure 5 shows the results of streamlines, isotherms 
and isopleths of solute concentration at t = 3 min. 
The line of dendrite tips is represented by the dashed 
curve. The discrepancy of the stream functions com- 
puted from the results of u(x, y, 7) and D(X, y, z), i.e. 

$(x,y,r) = !;udy = -j;adx (34) 

is within 0.01%. Unlike previous studies, the present 
streamlines are quite smooth, even at the line of den- 
drite tips. Note also that, due to the presence of den- 
drite arms, the natural convection inside the mushy 
zone is very weak as compared to that in the pure 
liquid region. To properly present the flow field, 
streamlines with A$ = 3 is illustrated in Fig. 5(a) for 
the pure liquid region, while that with a small 
increment A$ = 0.2 is provided in Fig. 5(b) for the 
mushy zone. For a similar reason, isotherms with 
A0 = 0.01 and A0 = 0.1 and isopleths of con- 
centration with A4 = 0.0003 and A+ = 0.006 are pre- 
sented in Figs. 5(c)-(f), respectively. The results of 
streamlines, isotherms and isopleths of solute con- 
centration for t = 5 min are shown in Fig. 6 with the 
same system of increments. 

Figure 5 reveals a weak counter-clockwise cir- 
culation flow ($,,, = + 2.4) in the mushy zone and a 
strong clockwise circulation flow (timin = - 50.48) in 
the pure liquid region. This leads to a strong descend- 
ing flow along the line of dendrite tips. As illustrated 
in Fig. 5(b), the interdendritic flow near the cold wall 
(x = 1) brings the rejected solute (water) to the top of 
the enclosure. Some of the solute then stays there 
to form a solute-rich top layer, while the remainder 
follows the descending tlow to go down the bottom of 
the enclosure. Upon hitting the bottom, part of the 
solute-rich liquid turns into the clockwise circulation 
flow in the pure liquid region, while the other turns to 
right to complete the counter-clockwise circulation in 
the mushy zone. Hence, the space in between the two 
adjacent isopleths of C = 0.7033 and C = 0.7093 [see 
Fig. 5(f)] rapidly widens in a region near the enclosure 
bottom. These characteristics of the double-diffusive 
convection (including the formation of the solute-rich 
top layer) are more pronounced as time elapses, see 
Fig. 6 for instance. 

Figure 7 shows the present prediction for the line 
of dendrite tips at t = 3 min. A tracing from a shadow- 
graph image of Beckermann and Viskanta’s exper- 
iment [6] is also plotted in Fig. 7 for comparison. It is 
noted that the shadowgraph [6] also recorded the 
region of the solute-rich top layer, as indicated by 
marker A. Physically, the high solute concentration 
in the solute-rich top layer would depress the growth 
of the mushy zone such that the mushy zone should 
have a small thickness on the top of the enclosure. 
The present result seems to correctly reflect this point. 
In their experiment, Bekermann and Viskanta [6] 
found that some of the dendrites were not firmly 
attached to the cold wall (x = 1). These loose den- 
drites followed the above-mentioned descending flow 
and deposited on the bottom of the liquid region (see 
Fig. 7). Although such an effect is not considered in 
the present study, the present prediction on the total 
volume of mushy zone has a good agreement with the 
experimental result, as observable from Fig. 7. 
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$'mi,=-50.48. A'@=3 -_-__ 

(4 
i3=0.9-1.0, A.8=0.01 

C=O.7-0.7033, AC=O.O003 

(b) 
0=0-0.9, A8=0.1 

(4 
C=O.'7033-0.7693, AC=O.O06 

Fig. 5. Present prediction of streamlines, isotherms and isopleths of solute concentration for example 2 at 
t = 3 min. 
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@,,i,=-46.18, A'+=3 

(4 
8=0.9-1.0, AB=O.Ol 

qmcur=2.8, A'$=O.2 

C=O.7002-0.7033, AC=O.O003 

04 
8=0-0.9, A9=0.1 

C=O.7033-0.7693, AC=O.O06 

Fig. 6. Present prediction of streamlines, isotherms and isopleths of solute concentration for example 2 at 
t = 5 min. 
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------ Present study 

0.2 
- experiment [6] 

0.0 ‘fl I 

0.0 0.2 0.4 0.6 0.6 1.0 

Fig. 7. Comparison of the line of dendrite tips for example 2 
at t = 3 min. 

Y t=5min 
0.4 

------ Present study 

0.0 0.2 0.4 0.6 0.8 1.0 

x 

Fig. 8. Comparison of the line of dendrite tips for example 
at t = 5 min. 

Figure 8 shows a comparison of the present pre- 
diction with that of Yoo and Viskanta [15] on the 
profile of the line of dendrite tips at t = 5 min. On 
Fig. 8 a large discrepancy between the two predictions 
is observed. For instance, the present result of mushy 
zone thickness at y = 0.5 (or Y = 2.38 cm) is 0.98 cm 
as compared to 1.43 cm predicted by Yoo and Vis- 
kanta [15]. This discrepancy is obviously not due to 
the effect of anisotropic permeability in the mushy 
zone [15]. Unfortunately, there are no shadowgraphs 
available for the particular time oft = 5 min. In their 
study, Yoo and Viskanta [15] predicted that the thick- 
ness of the mushy zone at y = 0.5 increased from 2.10 
to 2.20 cm as time elapsed from 15 to 20 min. Its 
counterpart in the experiment [6], however, grew only 
from 1.12 to 1.28 cm. Their numerical procedure 
seems to overpredict the mushy zone thickness by 
80%. Hence, the thickness of the mushy zone in the 
experiment [6] can be roughly estimated by 
1.43/1.8 x 0.79 cm for (y, t) = (0.5, 5 min). This esti- 
mation is close to 0.98 x 0.8 z 0.78 cm, if one assumes 

that the mushy zone thickness (at y = 0.5) in the 
experiment is 80% as large as that predicted by the 
present method (see Fig. 7). Therefore, the present 
prediction is believed to agree with the experimental 
result as well for t = 5 min, if the effect of the descend- 
ing detached-dendrite can be properly considered in 
the computations. 

CONCLUSION 

In solidification process of a binary alloy, there 
could be a two-phase region known as mushy zone 
between the solid region and the liquid region. The 
mushy zone and the solid region are separated by the 
eutectic front. Physically, a great amount of latent 
heat could be suddenly released from an area when 
the eutectic front sweeps through that area. In 
addition, both the pressure-linked equation and the 
species equation become trivial in the solid region. In 
the present study, a modified latent heat method is 
employed to handle the abruptly released latent heat 
from the eutectic front. 

The eutectic state (C,, TE) and the no-slip condition 
are imposed on the eutectic front such that there is no 
need to solve the momentum and species equation in 
the solid region. Fortunately, the weighting function 
scheme along with the NAPPLE algorithm is found 
to solve the transport equations quite efficiently in 
such an irregular domain consisting of the mushy zone 
and liquid region. As illustrated in example 1, the 
present method successfully predicts the physical 
phenomenon that the rejected solute accumulated in 
front of dendrite tips could cause remelt of dendrites. 
From a simulation of solidification process in an 
NH&-H20 solution (example 2), the present method 
was found capable of resolving the double-diffusive 
phenomena observed in the experiment. Furthermore, 
the total volume of mushy zone predicted by the pre- 
sent method shows a satisfactory agreement with the 
shadowgraphs of the experiment. 
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